Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACC Clin Electrophysiol ; 8(8): 1034-1039, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35907755

RESUMO

Ultra-low temperature cryoablation (ULTC) is a novel ablation modality aiming to combine the effectiveness of surgical lesion delivery with percutaneous safety to improve outcomes in catheter ablations of atrial fibrillation, particularly in persistent AF (PsAF). In the Cryocure-2 study (NCT02839304) 78 patients (56.4% PsAF) received ULTC pulmonary vein isolation plus posterior wall ablation, and linear left and right atrial lesions as needed. The safety and acute success of ULTC appear consistent with current catheter ablation techniques and, together with Kaplan-Meier 85.9% 1-year freedom from AF observed in Cryocure-2 PsAF patients, warrant further evaluation in larger clinical trials, which are currently ongoing.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Criocirurgia , Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Criocirurgia/efeitos adversos , Criocirurgia/métodos , Humanos , Temperatura , Resultado do Tratamento
3.
Evol Med Public Health ; 2019(1): 18-25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805187

RESUMO

The timing and location of the first cases of the 1918 influenza pandemic are still controversial, a century after the pandemic became widely recognized. Here, we critically review competing hypotheses on the timing and geographical origin of this important outbreak and provide new historical insights into debates within military circles as to the nature of putative pre-1918 influenza activity. We also synthesize current knowledge about why the 1918 pandemic was so intense in young adults. Although it is still not clear precisely when and where the outbreak began and symptom-based reports are unlikely to reveal the answer, indirect methods including phylogenetics provide important clues, and we consider whether intense influenza activity as far back as 1915 in the USA may have been caused by viral strains closely related to the 1918 one.

4.
Sci Total Environ ; 635: 761-768, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710599

RESUMO

Catchment properties influence the character and concentration of dissolved organic matter (DOM). Surface and subsurface runoff from discrete catchments were collected and DOM was measured and assessed in terms of its treatability by Enhanced Coagulation and potential for disinfection by-product (trihalomethane, THMFP) formation potential. Models were developed of [1] DOM character [i.e. SUVA and SpCoL] and concentration (measured as dissolved organic carbon), [2] treatability of DOM by coagulation/flocculation processes and [3] specific THMFP based on the catchment features including: (a) surface and sub-surface soil texture (% clay: 5-25%), (b) topography (% slope: 5-15%) and (c) vegetation cover [i.e. high photosynthetic vegetation, low photosynthetic vegetation and bare soil] extracted from RapidEye satellite imagery using spectral mixture analysis. From these models, a catchment management decision support tool was designed for application by catchment managers to support decision-making of land-use and expected water quality related to water resources for drinking water supply. SOFTWARE AND DATA AVAILABILITY: Data sets used for models developing presented in this paper have been published in Research Data Australia (RDA) under the title of "Impacts of catchment properties on DOM and nutrients in waters from drinking water catchments".1 These data sets are available in open access and published in June 2017. A catchment management decision support model (CMDSM) tool was developed. Macros created using Visual Basic for Applications in Excel 2010. Excel 2010 or higher is required to open the CMDSM tool. The tool is provided by the University of South Australia (UniSA) and is not currently available on-line so please contact the corresponding author for access or further information.


Assuntos
Água Potável/química , Modelos Químicos , Trialometanos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Austrália
5.
Environ Pollut ; 220(Pt B): 788-796, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27823862

RESUMO

Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character depending on its source within catchments and the timing and intensity of rainfall events. Here we report the findings of a study on the character and concentration of DOM in waters collected during different seasons from Myponga River and Reservoir, South Australia. The character of DOM was assessed in terms of its treatability by enhanced coagulation and potential for disinfection by-product i.e. trihalomethane (THM) formation. During the wet seasons (winter and spring), water samples from the river had higher DOC concentrations (X¯: 21 mg/L) and DOM of higher average molecular weight (AMW: 1526 Da) than waters collected during the dry seasons (summer and autumn: DOC: 13 mg/L; AMW: 1385 Da). Even though these features led to an increase in the percentage removal of organics by coagulation with alum (64% for wet compared with 53% for dry season samples) and a lower alum dose rate (10 versus 15 mg alum/mg DOC removal), there was a higher THM formation potential (THMFP) from wet season waters (treated waters: 217 µg/L vs 172 µg/L). For reservoir waters, samples collected during the wet seasons had an average DOC concentration (X¯: 15 mg/L), percentage removal of organics by alum (54%), alum dose rates (13 mg/mg DOC) and THMFP (treated waters: 207 µg/L) that were similar to samples collected during the dry seasons (mean DOC: 15 mg/L; removal of organics: 52%; alum dose rate: 13 mg/mg DOC; THMFP: 212 µg/L for treated waters). These results show that DOM present in river waters and treatability by alum are highly impacted by seasonal environmental variations. However these in reservoir waters exhibit less seasonal variability. Storage of large volumes of water in the reservoir enables mixing of influent waters and stabilization of water quality.


Assuntos
Água Potável/análise , Água Potável/química , Água Doce/análise , Água Doce/química , Compostos Orgânicos/análise , Rios/química , Clima , Monitoramento Ambiental , Estações do Ano , Austrália do Sul
6.
Ecol Appl ; 20(7): 2007-23, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21049886

RESUMO

Ecosystem energy is now recognized as a primary correlate and potential driver of global patterns of species richness. The increasingly well-tested species-energy relationship is now ripe for application to conservation, and recent advances in satellite technology make this more feasible. While the correlates for the species-energy relationship have been addressed many times previously, this study is among the first to apply species-energy theory to conservation. Our objectives were to: (1) determine the strongest model of bird richness across North America; (2) determine whether the slope of the best species-energy model varied with varying energy levels; and (3) identify the spatial patterns with similar or dissimilar slopes to draw inference for conservation. Model selection techniques were used to evaluate relationships between Moderate Resolution Imaging Spectroradiometer (MODIS) measures of ecosystem energy and species richness of native land birds using the USGS Breeding Bird Survey (BBS) data. Linear, polynomial, and break point regression techniques were used to evaluate the shape of the relationships with correction for spatial autocorrelation. Spatial analyses were used to determine regions where slopes of the relationship differed. We found that annual gross primary production (GPP) was the strongest correlate of richness (adjusted R2 = 0.55), with a quadratic model being the strongest model. The negative slope of the model was confirmed significantly negative at the highest energy levels. This finding demonstrates that there are three different slopes to the species-energy relationship across the energy gradient of North America: positive, flat, and negative. If energy has a causal relationship with richness, then species-energy theory implies that energy causes richness to increase in low-energy areas, energy has little effect in intermediate-energy areas, and energy depresses richness in the highest-energy areas. This information provides a basis for potential applications for more effective conservation. For example, in low-energy areas, increased nutrients could improve vegetation productivity and increase species richness. In high-energy areas where competitive dominance of vegetation might reduce species richness, vegetation manipulation could increase species richness. These strategies will likely be most effective if tailored to the local energy gradient.


Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Migração Animal , Animais , Metabolismo Energético , Modelos Biológicos , América do Norte , Dinâmica Populacional , Especificidade da Espécie
7.
PLoS One ; 4(9): e6964, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19759909

RESUMO

To avoid molecular damage of biomolecules due to oxidation, all cells have evolved constitutive and responsive systems to mitigate and repair chemical modifications. Archaea have adapted to some of the most extreme environments known to support life, including highly oxidizing conditions. However, in comparison to bacteria and eukaryotes, relatively little is known about the biology and biochemistry of archaea in response to changing conditions and repair of oxidative damage. In this study transcriptome, proteome, and chemical reactivity analyses of hydrogen peroxide (H(2)O(2)) induced oxidative stress in Sulfolobus solfataricus (P2) were conducted. Microarray analysis of mRNA expression showed that 102 transcripts were regulated by at least 1.5 fold, 30 minutes after exposure to 30 microM H(2)O(2). Parallel proteomic analyses using two-dimensional differential gel electrophoresis (2D-DIGE), monitored more than 800 proteins 30 and 105 minutes after exposure and found that 18 had significant changes in abundance. A recently characterized ferritin-like antioxidant protein, DPSL, was the most highly regulated species of mRNA and protein, in addition to being post-translationally modified. As expected, a number of antioxidant related mRNAs and proteins were differentially regulated. Three of these, DPSL, superoxide dismutase, and peroxiredoxin were shown to interact and likely form a novel supramolecular complex for mitigating oxidative damage. A scheme for the ability of this complex to perform multi-step reactions is presented. Despite the central role played by DPSL, cells maintained a lower level of protection after disruption of the dpsl gene, indicating a level of redundancy in the oxidative stress pathways of S. solfataricus. This work provides the first "omics" scale assessment of the oxidative stress response for an archeal organism and together with a network analysis using data from previous studies on bacteria and eukaryotes reveals evolutionarily conserved pathways where complex and overlapping defense mechanisms protect against oxygen toxicity.


Assuntos
Estresse Oxidativo , Sulfolobus solfataricus/metabolismo , Antioxidantes/metabolismo , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Sulfolobus solfataricus/genética
9.
J Environ Qual ; 33(6): 1973-88, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15537919

RESUMO

Phosphorus transfer in runoff from intensive pasture systems has been extensively researched at a range of scales. However, integration of data from the range of scales has been limited. This paper presents a conceptual model of P transfer that incorporates landscape effects and reviews the research relating to P transfer at a range of scales in light of this model. The contribution of inorganic P sources to P transfer is relatively well understood, but the contribution of organic P to P transfer is still relatively poorly defined. Phosphorus transfer has been studied at laboratory, profile, plot, field, and watershed scales. The majority of research investigating the processes of P transfer (as distinct from merely quantifying P transfer) has been undertaken at the plot scale. However, there is a growing need to integrate data gathered at a range of scales so that more effective strategies to reduce P transfer can be identified. This has been hindered by the lack of a clear conceptual framework to describe differences in the processes of P transfer at the various scales. The interaction of hydrological (transport) factors with P source factors, and their relationship to scale, require further examination. Runoff-generating areas are highly variable, both temporally and spatially. Improvement in the understanding and identification of these areas will contribute to increased effectiveness of strategies aimed at reducing P transfers in runoff. A thorough consideration of scale effects using the conceptual model of P transfer outlined in this paper will facilitate the development of improved strategies for reducing P losses in runoff.


Assuntos
Modelos Teóricos , Fósforo/análise , Poluentes da Água/análise , Poluição da Água/prevenção & controle , Criação de Animais Domésticos , Animais , Animais Domésticos , Plantas Comestíveis , Polimetil Metacrilato , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...